Synthesis of New Polyfunctional 5,6,7,8-Tetrahydroimidazo-[1,5-c]pyrimidin-5-ones by the Aza-Wittig Reaction Followed by Intramolecular Cyclization and 1,3-Prototropic Shift

P. S. Lebed'^a, P. O. Kos^a, V. V. Polovinko^b, A. A. Tolmachev^b, and M. V. Vovk^a

^a Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 02660 Ukraine e-mail: mvovk@i.com.ua

^b Enamine Ltd., Kiev, Ukraine

Received July 8, 2008

Abstract—Ethyl 2-oxo-6-[(triphenyl- λ^5 -phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylates reacted with organic isocyanates according to the aza-Wittig pattern, and the subsequent intramolecular ring closure and 1,3-H shift resulted in the formation of ethyl 3-alkyl(aryl)amino-5-oxo-5,6,7,8-tetrahydro-imidazo[1,5-*c*]pyrimidine-8-carboxylates.

DOI: 10.1134/S1070428009060207

Imidazo[1,5-c]pyrimidines may be regarded as analogs of purines which constitute a pharmacologically important class of fused systems. One of the most familiar derivatives of this series is alkaloid Zapotidine (6-methylimidazo[1,5-c]tetrahydropyrimidine-5-thione) [1, 2] isolated from the seeds of *Casimiroa edulis* Llave *et* Lex. (*Rutaceae*); it was found to exhibit hypnotic, sedative, and hypotensive effects. Tetrahydro-imidazo[1,5-c]pyrimidin-5-one derivatives were identified as a new class of adenosine antagonists [3]. A semisynthetic glycopeptide antibiotic containing a tetrahydroimidazo[1,5-c]pyrimidine fragment was shown to be more active than the known antibiotic Vancomycin [4].

Imidazo[1,5-c]pyrimidines can be synthesized by intramolecular cyclization of histamine with the use of *N*,*N*'-carbonyldiimidazole [5, 6], *N*,*N*'-thiocarbonyldiimidazole [7], bis(4-nitrophenyl) carbonate [8], and *S*-phenyl chlorothiocarbonate [9] as condensing agents. However, these procedures make it possible to obtain only the corresponding 5-oxo or 5-thioxo derivatives. Published data on imidazo[1,5-c]pyrimidines having functional substituents in the imidazole or pyrimidine ring are very limited. Chivikas and Hodges [10] reported on the synthesis of methyl (7*S*)-5-oxo-5,6,7,8tetrahydroimidazo[1,5-c]pyrimidine-7-carboxylate from L-histidine methyl ester [10], and imidazo[1,5-c]pyrimidines containing chlorine atoms or methylsulfanyl groups in the pyrimidine ring were prepared on the basis of the corresponding 6-aminomethyl-substituted pyrimidines [11]. Nevertheless, imidazo[1,5-c]pyrimidine derivatives with functional groups capable of undergoing further transformations may be regarded as quite promising building blocks for the design of small libraries of potential biologically active compounds. Therefore, the present work was aimed at developing a synthetic approach to new imidazo[1,5-c]pyrimidine derivatives having an alkyl(aryl)amino group in position 3 and ester moiety in position 8. The approach was based on annulation to pyrimidine ring of exocyclic carbodiimide moiety generated *in situ* via the aza-Wittig reaction.

As starting compounds we selected ethyl 3-substituted 6-halomethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates **Ia–If**. These accessible compounds are widely used in both organic synthesis [12] and biomedical studies [13]. 6-Bromomethylpyrimidines **Ia–Ic** were synthesized according to the procedure described in [14], by bromination of the corresponding 6-methylpyrimidines in chloroform. To obtain 6-chloromethylpyrimidines **Id–If**, we have developed by analogy with the Biginelli reaction [15] a one-step procedure utilizing ethyl 4-chloro-3-oxobutanoate as β -dicarbonyl component. As a result, compounds **Id–If** were prepared in 78–84% yield by heating a mixture of aromatic aldehyde, ethyl 4-chloro-3-oxobutanoate, and

I, Hlg = Br, R = H (a), Me (b), Ph (c); Hlg = Cl, R = 4-ClC₆H₄ (d), 4-MeOC₆H₄ (e), 4-t-BuC₆H₄ (f); II, III, R = H (a), Me (b), Ph (c), 4-ClC₆H₄ (d), 4-MeOC₆H₄ (e), 4-t-BuC₆H₄ (f); IV, R' = *cyclo*-C₆H₁₁ (a), 4-ClC₆H₄ (b), 3-F₃CC₆H₄ (c), 4-MeOC₆H₄ (d), 3-Cl-4-MeC₆H₃ (e); V, R = H, R' = 4-ClC₆H₄ (a); R = Me, R' = 4-ClC₆H₄ (b), 4-MeOC₆H₄ (c); R = Ph, R' = *cyclo*-C₆H₁₁ (d), 4-ClC₆H₄ (e); R = 4-ClC₆H₄, R' = *cyclo*-C₆H₁₁ (f), 4-ClC₆H₄ (g), 4-MeOC₆H₄ (h); R = R' = 4-MeOC₆H₄ (i); R = 4-t-BuC₆H₄, R' = 3-F₃CC₆H₄ (j), 4-MeOC₆H₄ (k), 3-Cl-4-MeC₆H₃ (l).

urea at a ratio of 1:1:1.5 in acetic acid at 45–50°C over a period of 48 h.

Kappe [16] reported on the replacement of the bromine atom in 6-bromomethylpyrimidine **Ic** by azido group by treatment with sodium azide in HMPA (3 days). We found that both bromo- and chloromethyl derivatives **Ia–If** smoothly reacted with NaN₃ in DMF at room temperature to give in 12 h the corresponding 6-azidomethylpyrimidines **IIa–IIf** (Scheme 1). The latter were heated with triphenylphosphine in aceto-nitrile solution to obtain new 1,2,3,4-tetrahydropyrimidin-2-one derivatives, methyliminophosphoranes **IIIa–IIIf**, whose structure was consistent with their ¹H and ³¹P NMR spectra.

In the past two decades, aza-Wittig reactions of *N*-alkyl(alkenyl, aryl, hetaryl)iminophosphoranes have become a powerful tool in the synthesis of various heterocycles and fused heterocyclic systems [17, 18]. It was shown that 2-aminoimidazoles can be synthesized by condensation of amines with carbodiimides generated by the aza-Wittig reaction [19-21]. However, examples of reactions of carbodiimides with amino groups in partially hydrogenated pyrimidines were not reported. We have found that iminophosphoranes IIIa-IIIf react with isocyanates IVa-IVe in boiling chlorobenzene to produce ethyl 3-R-amino-5oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8-carboxylates Va-Vl in satisfactory yield. Presumably, initial aza-Wittig reaction gives pyrimidinylmethylcarbodiimides A which, despite reduced basicity of the

 N^1 atom in the pyrimidine ring, undergo intramolecular cyclization on heating in the absence of a catalyst to form 1,5,6,7-tetrahydroimidazo[1,5-*c*]pyrimidines **B**. The subsequent 1,3-H shift in the $C^1-C^{8a}=C^8$ allylic system yields more stable structure **V** (Scheme 1). This transformation is an example of hydrogenation of pyrimidine ring via aromatization of imidazole ring fused thereto.

The structure of compounds Va-Vl was determined on the basis of their IR, ¹H and ¹³C NMR, and mass spectra. The IR spectra of Va-VI contained absorption bands belonging to stretching vibrations of carbonyl groups in the cyclic ureide fragment (1700–1710 cm⁻¹) and ester moiety (1730-1740), as well as N-H absorption bands in the region 3230–3390 cm⁻¹. According to the ¹H NMR data, analytically pure samples of some compounds V (obtained by recrystallization from propan-2-ol) were mixtures of diastereoisomers. In particular, double sets of signals from almost all protons were observed in the ¹H NMR spectra of Vb, Vc, Ve, Vh, Vi, and Vl; the signal intensity ratios were 3:1 (Vb), 5:1 (Vc), 1:1 (Ve), 10:1 (Vh, Vi), and 8:1 (VI). After repeated recrystallization from ethanol-DMF (3:1), signals belonging to the minor isomer disappeared from the spectra of compounds Vb, Vc, Vh, Vi, and VI, whereas the spectral pattern of Ve almost did not change. These findings suggests that the 1,3-H shift leading to the target products is stereoselective (in most cases, one of the four possible diastereoisomers prevails). The minor product is removed by recrystallization of the diastereoisomer mixture.

Analysis of the NMR spectra of racemic compound Va, pure diastereoisomers Va-Vd and Vf-Vl, and diastereoisomer mixture Ve allowed us to reliably assign the most typical signals. The 8-H proton in major diastereoisomers resonated in the ¹H NMR spectra at δ 3.94–4.36 ppm as a doublet with a coupling constant J of 3.7–4.2 Hz, while the 7-H signal appeared as a multiplet in the region δ 4.90–5.06 ppm. The singlet at δ 6.23–6.64 ppm was assigned to 1-H. The presence in the ¹H NMR spectra of Vd and Vf of a doublet signal from the NH proton in the exocyclic cyclohexylamino group (δ 6.5 ppm, J 7.6 Hz) rules out isomeric 3-imino structure. Minor diastereoisomers are characterized by insignificant shifts of the above signals, and the coupling constant for 8-H is 5.0 Hz. The coupling constants for 8-H in the major (J = 3.7-4.2 Hz) and minor diastereoisomers (J = 5.0 Hz) indicate small difference in the corresponding torsion angles; therefore, equatorial-axial orientation of 7-H and 8-H was presumed. The ¹³C NMR spectra of individual diastereoisomers Vd and Vf-Vl contained signals from carbon atoms in the imidazo [1,5-c] pyrimidine system at $\delta_{\rm C} \sim 43 \ ({\rm C}^8), \sim 55 \ ({\rm C}^7), 115 - 117 \ ({\rm C}^{8a}), 122 - 123 \ ({\rm C}^1),$ and 144–149 ppm (C³). In the ¹³C NMR spectrum of diastereoisomer mixture Ve, the corresponding signals were doubled, but the difference in the chemical shifts was fairly small ($\Delta \delta_{\rm C} \sim 0.3-1$ ppm).

EXPERIMENTAL

The IR spectra were recorded in KBr on a UR-20 instrument. The ¹H NMR spectra were measured on a Varian Gemini spectrometer at 299.94 MHz using tetramethylsilane as internal reference. The ³¹P NMR spectra were obtained on a Varian Gemini instrument at 80.95 MHz relative to 85% H₃PO₄ as external reference. The ¹³C NMR spectra were run on a Bruker Avance DRX-500 spectrometer (125.75 MHz) using tetramethylsilane as internal reference. All NMR spectra were recorded from solutions in DMSO-*d*₆.

Ethyl 4-aryl-6-chloromethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates Id–If (general procedure). A mixture of 0.02 mol of the corresponding aromatic aldehyde, 3.3 g (0.02 mol) of ethyl 4-chloro-3-oxobutanoate, and 1.8 g (0.03 mol) of urea in 50 ml of acetic acid was heated for 48 h at 45–50°C. The mixture was then poured into 200 ml of water, and the precipitate was filtered off, dried, and recrystallized from 60% aqueous ethanol.

Ethyl 2-oxo-6-chloromethyl-4-(4-chlorophenyl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate (Id). Yield 84%, mp 180–181°C. IR spectrum, v, cm⁻¹: 3370, 3240 (N–H); 1690 (C=O, ester); 1640 (C²=O). ¹H NMR spectrum, δ , ppm: 1.14 t (3H, CH₂CH₃, J = 7.0 Hz), 4.04 m (2H, OCH₂), 4.56 d (1H, CH₂Cl, J = 10.5 Hz), 4.76 d (1H, CH₂, J = 10.5 Hz), 5.18 d (1H, 4-H, J = 3.3 Hz), 7.24 d (2H, H_{arom}, J = 8.6 Hz), 7.33 d (2H, H_{arom}, J = 8.6 Hz), 7.81 s and 9.47 s (1H each, NH). Found, %: C 51.19; H 4.30; N 8.57. C₁₄H₁₄Cl₂N₂O₃. Calculated, %: C 51.08; H 4.29; N 8.51.

Ethyl 6-chloromethyl-4-(4-methoxyphenyl)-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (Ie). Yield 79%, mp 185–186°C. IR spectrum, v, cm⁻¹: 3365, 3290 (N–H), 1690 (C=O, ester); 1640 (C²=O). ¹H NMR spectrum, δ, ppm: 1.14 t (3H, CH₂CH₃, J =7.0 Hz), 3.72 s (3H, OCH₃), 4.02 m (2H, OCH₂), 4.58 d (1H, CH₂Cl, J = 10.6 Hz), 4.75 d (1H, CH₂Cl, J = 10.6 Hz), 5.13 d (1H, 4-H, J = 3.3 Hz), 6.84 d (2H, H_{arom}, J = 8.7 Hz), 7.16 d (2H, H_{arom}, J = 8.7 Hz), 7.71 s and 9.37 s (1H, NH). Found, %: C 55.59; H 5.30; N 8.59. C₁₅H₁₇ClN₂O₄. Calculated, %: C 55.48; H 5.28; N 8.63.

Ethyl 4-(4-*tert***-butylphenyl)-6-chloromethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate** (**If**). Yield 76%, mp 169–171°C. IR spectrum, v, cm⁻¹: 3370, 3290 (N–H); 1695 (C=O, ester); 1645 (C²=O). ¹H NMR spectrum, δ , ppm: 1.13 t (3H, CH₂CH₃, *J* = 7.0 Hz), 1.25 s (9H, *t*-Bu), 4.06 m (2H, OCH₂), 4.61 d (1H, CH₂Cl, *J* = 10.7 Hz), 4.75 d (1H, CH₂Cl, *J* = 10.7 Hz), 5.16 d (1H, 4-H, *J* = 3.4 Hz), 7.18 d (2H, H_{arom}, *J* = 8.4 Hz), 7.35 d (2H, H_{arom}, *J* = 8.4 Hz), 7.80 s and 9.47 s (1H each, NH). Found, %: C 61.59; H 6.60; N 8.00. C₁₈H₂₃ClN₂O₃. Calculated, %: C 61.62; H 6.61; N 7.98.

Ethyl 4-alkyl(aryl)-6-azidomethyl-2-oxo-1,2,3,4tetrahydropyrimidine-5-carboxylates IIa–IIf (general procedure). A mixture of 14 mmol of compound Ia–If, 1 g (15.4 mmol) of sodium azide, and a catalytic amount of tetrabutylammonium iodide in 8 ml of DMF was stirred for 5 h and left overnight. The mixture was then poured into 100 ml of water, and the precipitate was filtered off and recrystallized from ethanol.

Ethyl 6-azidomethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIa). Yield 67%, mp 149– 150°C. IR spectrum, v, cm⁻¹: 3330, 3240 (N–H); 2150 (N₃); 1705 (C=O, ester); 1640 (C²=O). ¹H NMR spectrum, δ, ppm: 1.23 t (3H, CH₂CH₃, J = 7.0 Hz), 3.96 s (2H, CH₂), 4.11 m (2H, OCH₂), 4.29 s (2H, CH₂), 7.08 s and 9.05 s (1H each, NH). Found, %: C 41.19; H 4.90; N 31.00. $C_8H_{11}N_5O_3$. Calculated, %: C 2.67; H 4.92; N 31.10.

Ethyl 6-azidomethyl-4-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIb). Yield 62%, mp 144–145°C. IR spectrum, v, cm⁻¹: 3320, 3230 (N–H); 2150 (N₃); 1705 (C=O, ester); 1645 (C=O). ¹H NMR spectrum, δ, ppm: 1.17 d (3H, 4-CH₃, J = 6.6 Hz), 1.24 t (3H, CH₂CH₃, J = 7.0 Hz), 4.05–4.29 m (4H, OCH₂, CH₂N₃, 4-H), 4.38 d (1H, CH₂N₃, J = 13 Hz), 7.25 s and 9.14 s (1H each, NH). Found, %: C 44.99; H 5.41; N 29.20. C₉H₁₃N₅O₃. Calculated, %: C 45.19; H 5.48; N 29.27.

Ethyl 6-azidomethyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIc). Yield 65%, mp 234–236°C. IR spectrum, v, cm⁻¹: 3330 (N–H), 2150 (N₃), 1705 (C=O, ester), 1640 (C²=O). ¹H NMR spectrum, δ, ppm: 1.14 t (3H, CH₂CH₃, J = 7.0 Hz), 4.05 m (2H, OCH₂), 4.35 d (1H, CH₂N₃, J = 12.7 Hz), 4.46 d (1H, CH₂N₃, J = 12.7 Hz), 5.21 d (1H, 4-H, J =3.2 Hz), 7.29 m (5H, Ph), 7.80 s and 9.39 s (1H each, NH). Found, %: C 55.79; H 5.01; N 23.20. C₁₄H₁₅N₅O₃. Calculated, %: C 55.81; H 5.02; N 23.24.

Ethyl 6-azidomethyl-4-(4-chlorophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IId). Yield 67%, mp 119–120°C. IR spectrum, v, cm⁻¹: 3330 (N–H), 2150 (N₃), 1705 (C=O, ester), 1640 (C²=O). ¹H NMR spectrum, δ, ppm: 1.14 t (3H, CH₂CH₃, J =7.0 Hz), 4.04 m (2H, OCH₂), 4.30 d (1H, CH₂N₃, J =13 Hz), 4.58 d (1H, CH₂N₃, J = 13 Hz), 5.20 d (1H, 4-H, J = 3.2 Hz), 7.24–7.38 m (4H, H_{arom}), 7.82 s and 9.43 s (1H each, NH). Found, %: C 50.00; H 4.11; N 21.00. C₁₄H₁₄ClN₅O₃. Calculated, %: C 50.08; H 4.20; N 20.86.

Ethyl 6-azidomethyl-4-(4-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIe). Yield 70%, mp 132–136°C. IR spectrum, v, cm⁻¹: 3360, 3255 (N–H); 2135 (N₃); 1690 (C=O, ester); 1640 (C²=O). ¹H NMR spectrum, δ , ppm: 1.14 t (3H, CH₂CH₃, J = 7.0 Hz), 3.73 s (3H, OCH₃), 4.04 m (2H, OCH₂), 4.31 d (1H, CH₂N₃, J = 13 Hz), 4.45 d (1H, CH₂N₃, J = 13 Hz), 5.15 d (1H, 4-H, J = 3.2 Hz), 6.83 d (2H, H_{arom}, J = 8.5 Hz), 7.17 d (2H, H_{arom}, J =8.5 Hz), 7.72 s and 9.33 s (1H each, NH). Found, %: C 54.32; H 5.13; N 21.09. C₁₅H₁₇N₅O₄. Calculated, %: C 54.38; H 5.17; N 21.14.

Ethyl 6-azidomethyl-4-(4-*tert*-butylphenyl)-2oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIf). Yield 71%, mp 107–108°C. IR spectrum, v, cm⁻¹: 3390, 3330 (N–H); 2120 (N₃); 1705 (C=O, ester); 1660 (C²=O). ¹H NMR spectrum, δ, ppm: 1.16 t (3H, CH₂CH₃, J = 7.0 Hz), 1.27 s (9H, *t*-Bu), 4.04 m (2H, OCH₂), 4.29 d (1H, CH₂N₃, J = 13 Hz), 4.48 d (1H, CH₂N₃, J = 13 Hz), 5.17 d (1H, 4-H, J = 3.2 Hz), 7.18 d (2H, H_{arom}, J = 8.5 Hz), 7.30 d (2H, H_{arom}, J = 8.5 Hz), 7.74 s and 9.35 s (1H each, NH). Found, %: C 60.33; H 6.43; N 19.67. C₁₈H₂₃N₅O₃. Calculated, %: C 60.49; H 6.49; N 19.59.

Ethyl 4-alkyl(aryl)-2-oxo-6-[(triphenyl- λ^5 -phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylates IIIa–IIIf (general procedure). A solution of 1.834 g (7 mmol) of triphenylphosphine in 20 ml of acetonitrile was added to a solution of 7 mmol of compound IIa–IIf in 25 ml of hot acetonitrile, the mixture was left overnight at room temperature, and the precipitate was filtered off.

Ethyl 2-oxo-6-[(triphenyl- λ^5 -phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIIa). Yield 88%, mp 159–160°C. IR spectrum, v, cm⁻¹: 3260 (N–H), 1685 (C=O, ester), 1635 (C²=O). ¹H NMR spectrum, δ , ppm: 1.11 t (3H, CH₂CH₃, *J* = 7.1 Hz), 3.88–3.98 m (4H, OCH₂, 4-H), 4.19 d (1H, 6-CH₂, *J* = 11.5 Hz), 7.08 s (1H, NH), 7.58 m (15H, Ph), 8.76 s (1H, NH). ³¹P NMR spectrum: δ_P 18.80 ppm. Found, %: C 68.04; H 5.77; N 9.17. C₂₆H₂₆N₃O₃P. Calculated, %: C 67.96; H 5.70; N 9.14.

Ethyl 4-methyl-2-oxo-6-[(triphenyl- λ^5 -phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIIb). Yield 87%, mp 176– 179°C. IR spectrum, v, cm⁻¹: 3270 (N–H), 1685 (C=O, ester), 1630 (C²=O). ¹H NMR spectrum, δ, ppm: 1.12 m (6H, CH₂CH₃, 4-CH₃), 3.85–4.31 m (5H, OCH₂, 6-CH₂, 4-H), 7.28 s (1H, NH), 7.59 m (15H, Ph), 8.89 s (1H, NH). ³¹P NMR spectrum: δ_P 14.54 ppm. Found, %: C 68.54; H 5.97; N 8.82. C₂₇H₂₈N₃O₃P. Calculated, %: C 68.49; H 5.96; N 8.87.

Ethyl 2-oxo-4-phenyl-6-[(triphenyl- λ^5 -phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIIc). Yield 88%, mp 155– 157°C. IR spectrum, v, cm⁻¹: 3210 (N–H), 1680 (C=O, ester), 1640 (C=O). ¹H NMR spectrum, δ, ppm: 1.00 t (3H, CH₂CH₃, *J* = 7.0 Hz), 3.89 m (2H, OCH₂), 4.30 m (2H, 6-CH₂), 5.15 d (1H, 4-H, *J* = 3.4 Hz), 7.19– 7.34 m (5H, Ph), 7.62 m (15H, Ph), 7.89 s and 9.06 s (1H each, NH). ³¹P NMR spectrum: δ_P 16.07 ppm. Found, %: C 71.64; H 5.69; N 7.83. C₃₂H₃₀N₃O₃P. Calculated, %: C 71.76; H 5.65; N 7.85.

Ethyl 4-(4-chlorophenyl)-2-oxo-6-[(triphenyl-λ⁵phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIId). Yield 85%, mp 190–193°C. IR spectrum, v, cm⁻¹: 3210 (N–H), 1675 (C=O, ester), 1638 (C²=O). ¹H NMR spectrum, δ, ppm: 1.02 t (3H, CH₂CH₃, J = 7.0 Hz), 3.92 m (2H, OCH₂), 4.32 m (2H, 6-CH₂), 5.17 d (1H, 4-H, J =3.2 Hz), 7.22 d (2H, H_{arom}, J = 8.0 Hz), 7.38 d (2H, H_{arom}, J = 8.0 Hz), 7.61 m (15H, Ph), 7.92 s and 9.11 s (1H each, NH). ³¹P NMR spectrum: δ 16.14 ppm. Found, %: C 67.55; H 5.15; N 7.42. C₃₂H₂₉ClN₃O₃P. Calculated, %: C 67.43; H 5.13; N 7.37.

Ethyl 4-(4-methoxyphenyl)-2-oxo-6-[(triphenyl- λ^5 -phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIIe). Yield 76%, mp 145–146°C. IR spectrum, v, cm⁻¹: 3215 (N–H), 1680 (C=O, ester), 1640 (C²=O). ¹H NMR spectrum, δ, ppm: 1.01 t (3H, CH₂CH₃, *J* = 7.0 Hz), 3.71 s (3H, OCH₃), 3.87 m (2H, OCH₂), 4.29 m (2H, 6-CH₂), 5.11 d (1H, 4-H, *J* = 3.2 Hz), 6.86 d (2H, H_{arom}, *J* = 8.2 Hz), 7.11 d (2H, H_{arom}, *J* = 8.2 Hz), 7.61 m (15H, Ph), 7.85 s and 9.06 s (1H each, NH). ³¹P NMR spectrum: δ_P 16.30 ppm. Found, %: C 70.05; H 5.72; N 7.41. C₃₃H₃₂N₃O₄P. Calculated, %: C 70.08; H 5.70; N 7.43.

Ethyl 4-(4-*tert*-butylphenyl)-2-oxo-6-[(triphenyl- λ^5 -phosphanylidene)aminomethyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylate (IIIf). Yield 69%, mp 174–176°C. IR spectrum, v, cm⁻¹: 3210 (N–H), 1680 (C=O, ester), 1640 (C²=O). ¹H NMR spectrum, δ, ppm: 1.02 t (3H, CH₂CH₃, *J* = 7.0 Hz), 1.25 s (9H, *t*-Bu), 3.88 m (2H, OCH₂), 4.27 m (2H, 6-CH₂), 5.12 d (1H, 4-H, *J* = 3.2 Hz), 7.14 d (2H, H_{arom}, *J* = 8.0 Hz), 7.31 d (2H, H_{arom}, *J* = 8.0 Hz), 7.59 m (15H, Ph), 7.86 s and 9.05 s (1H each, NH). ³¹P NMR spectrum: δ_P 16.25 ppm. Found, %: C 73.01; H 6.53; N 7.12. C₃₆H₃₈N₃O₃P. Calculated, %: C 73.08; H 6.47; N 7.10.

Ethyl 3-alkyl(aryl)amino-7-alkyl(aryl)-5-oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8carboxylates Va–Vl (general procedure). A mixture of 2 mmol of compound IIIa–IIIf and 2 mmol of isocyanate IVa–IVe in 10 ml of chlorobenzene was heated for 5–6 h under reflux, the mixture was evaporated, and the residue was recrystallized from propan-2-ol. Compounds Vb, Vc, Ve, Vh, Vi, and Vl were additionally purified by recrystallization from ethanol– DMF (3:1).

Ethyl 3-(4-chlorophenylamino)-5-oxo-5,6,7,8tetrahydroimidazo[1,5-*c*]pyrimidine-8-carboxylate (Va). Yield 52%, mp 176–177°C. IR spectrum, v, cm⁻¹: 3245 (N–H), 1740 (C=O, ester), 1700 (C⁵=O). ¹H NMR spectrum, δ , ppm: 1.24 t (3H, CH₂CH₃, *J* = 6.5 Hz), 3.56 m (3H, 7-H, 8-H), 4.17 m (2H, OCH₂), 6.58 s (1H, 1-H), 7.26 d (2H, H_{arom}, *J* = 8.7 Hz), 7.71 d (2H, H_{arom}, *J* = 8.7 Hz), 8.39 s and 9.40 s (1H each, NH). ¹³C NMR spectrum, $δ_C$, ppm: 13.95 (CH₂CH₃), 36.77 (C⁷), 42.08 (C⁸), 61.59 (OCH₂), 118.90 (CH_{arom}), 122.21 (C¹), 125.03 (C^{8a}), 129.03 (CH_{arom}), 139.14 (C_{arom}), 145.44 (C³), 151.45 (C⁵), 169.88 (C=O). Mass spectrum: *m*/*z* 335 [*M* + 1]⁺. Found, %: C 53.94; H 4.56; N 16.71. C₁₅H₁₅ClN₄O₃. Calculated, %: C 53.82; H 4.52; N 16.74. *M* 334.76.

Ethyl 3-(4-chlorophenylamino)-7-methyl-5-oxo-5,6,7,8-tetrahydroimidazo[1,5-*c*]pyrimidine-8-carboxylate (Vb). Yield 27%, mp 195–196°C. IR spectrum, v, cm⁻¹: 3245 (N–H), 1735 (C=O, ester), 1710 (C⁵=O). ¹H NMR spectrum, δ, ppm: 1.21 m (6H, CH₃), 3.94 m (2H, 7-H, 8-H), 4.15 m (2H, OCH₂), 6.62 s (1H, 1-H), 7.32 d (2H, H_{arom}, J = 8.5 Hz), 7.77 d (2H, H_{arom}, J = 8.5 Hz), 8.48 s and 9.39 s (1H each, NH). ¹³C NMR spectrum, δ_C, ppm: 13.78 (CH₂CH₃), 19.78 (7-CH₃), 42.51 (C⁸), 48.62 (C⁷), 61.10 (OCH₂), 117.61 (C^{8a}), 118.52 (CH_{arom}), 122.66 (C¹), 124.39 (C_{arom}), 128.49 (CH_{arom}), 138.45 (C_{arom}), 144.69 (C³), 150.07 (C⁵), 169.39 (C=O). Mass spectrum: *m*/*z* 349 [*M* + 1]⁺. Found, %: C 55.23; H 4.99; N 16.11. C₁₆H₁₇ClN₄O₃. Calculated, %: C 55.10; H 4.91; N 16.06. *M* 348.79.

Ethyl 3-(4-methoxyphenylamino)-7-methyl-5oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8carboxylate (Vc). Yield 60%, mp 155-157°C. IR spectrum, v, cm⁻¹: 3245 (N–H), 1735 (C=O, ester), 1710 (C⁵=O). ¹H NMR spectrum, δ , ppm: 1.18 d (3H, 7-CH₃, J = 6.7 Hz), 1.23 t (3H, CH₂CH₃, J = 7.0 Hz), 3.72 s (3H, OCH₃), 3.92 m (1H, 7-H), 4.01 d (1H, 8-H, J = 4.1 Hz, 4.13 m (2H, OCH₂), 6.55 s (1H, 1-H), 7.83 d (2H, H_{arom}, J = 8.5 Hz), 7.58 d (2H, H_{arom}, J =8.5 Hz), 8.32 s and 9.16 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 14.03 (CH₂CH₃), 17.10 (7-CH₃), 41.12 (C^8) , 48.10 (C^7) , 55.07 (OCH_3) , 60.56 (OCH_2) , 114.00 (CH_{arom}), 117.67 (C^{8a}), 118.36 (CH_{arom}), 122.05 (C¹), 132.99 (C_{arom}), 145.62 (C³), 150.62 (C⁵), 153.81 (C_{arom}), 168.55 (C=O). Mass spectrum: m/z 345 $[M + 1]^+$. Found, %: C 59.22; H 5.87; N 16.25. C₁₇H₂₀N₄O₄. Calculated, %: C 59.29; H 5.85; N 16.27. M 344.37.

Ethyl 3-cyclohexylamino-5-oxo-7-phenyl-5,6,7,8tetrahydroimidazo[1,5-c]pyrimidine-8-carboxylate (Vd). Yield 48%, mp 191–192°C. IR spectrum, v, cm⁻¹: 3235 (N–H), 1730 (C=O, ester), 1710 (C⁵=O). ¹H NMR spectrum, δ, ppm: 1.20–1.47 m (8H, CH₃, *cyclo*-C₆H₁₁), 1.50–1.83 m (3H, *cyclo*-C₆H₁₁), 1.98 m (2H, *cyclo*-C₆H₁₁), 3.55 m (1H, *cyclo*-C₆H₁₁), 4.09 m (3H, OCH₂, 8-H), 4.90 m (1H, 7-H), 6.22 s (1H, 1-H), 6.55 d (1H, NH, J = 7.6 Hz), 7.22–7.33 m (5H, Ph), 8.49 d (1H, NH, J = 2.5 Hz). ¹³C NMR spectrum, δ_C, ppm: 13.75 (CH₂CH₃), 24.22 (*cyclo*-C₆H₁₁), 25.18 (cyclo-C₆H₁₁), 32.46 (cyclo-C₆H₁₁), 43.78 (C⁸), 50.37 (cyclo-C₆H₁₁), 55.80 (C⁷), 61.02 (OCH₂), 115.40 (C^{8a}), 123.06 (C¹), 126.03 (CH_{arom}), 127.71 (CH_{arom}), 128.40 (CH_{arom}), 139.66 (C_{arom}), 149.15 (C³), 150.62 (C⁵), 169.40 (C=O). Mass spectrum: m/z 383 $[M + 1]^+$. Found, %: C 65.89; H 6.90; N 14.55. C₂₁H₂₆N₄O₃. Calculated, %: C 65.95; H 6.85; N 14.65. *M* 382.46.

Ethyl 3-(4-chlorophenylamino)-5-oxo-7-phenyl-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8-carboxylate (Ve). Yield 59%, mp 206-208°C. IR spectrum, v, cm⁻¹: 3230 (N–H), 1730 (C=O, ester), 1710 (C⁵=O). ¹H NMR spectrum, δ , ppm: 0.95 t and 1.19 t $(3H, CH_2CH_3, J = 7.0 Hz), 3.86 m and 4.12 m (2H, 2H)$ OCH_2), 4.23 d (0.5H, 8-H, J = 4.0 Hz), 4.40 d (0.5H, 8-H, J = 5.0 Hz), 4.95–5.11 m (1H, 7-H), 6.49 s and 6.65 s (1H, 1-H), 7.13–7.40 m (7H, H_{arom}), 7.74 m (2H, H_{arom}), 8.85 s and 8.86 s (1H, NH), 9.44 s and 9.55 s (1H, NH). ¹³C NMR spectrum, δ_C , ppm: 13.51 and 13.84 (CH_2CH_3), 42.72 and 43.63 (C^8), 55.99 and 56.04 (C^7), 60.51 and 61.25 (OCH₂), 117.00 and 117.47 (C^{8a}), 118.63 and 118.65 (CH_{arom}), 122.63 and 123.10 (C¹), 124.48 and 124.50 (C_{arom}), 126.15 and 126.74 (CH_{arom}), 127.96 and 128.18 (C_{arom}), 128.29 and 128.53 (Carom), 128.56 and 128.60 (Carom), 137.19 and 138.39 (CH_{arom}), 138.46 and 139.25 (CH_{arom}), 144.70 and 144.93 (C³), 150.45 and 150.88 (C⁵), 167.84 and 169.15 (C=O). Mass spectrum: m/z 411 $[M + 1]^+$. Found, %: C 61.45; H 4.72; N 13.60. C₂₁H₁₉ClN₄O₃. Calculated, %: C 61.39; H 4.66; N 13.64. M 410.86.

Ethyl 7-(4-chlorophenyl)-3-cyclohexylamino-5oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8carboxylate (Vf). Yield 44%, mp 189-191°C. IR spectrum, v, cm⁻¹: 3230, 3390 (N–H); 1740 (C=O, ester); 1710 (C⁵=O). ¹H NMR spectrum, δ, ppm: 1.20–1.45 m (8H, CH₃, cyclo-C₆H₁₁), 1.55-1.82 m (3H, cyclo-C₆H₁₁), 1.98 m (2H, cyclo-C₆H₁₁), 3.54 m (1H, cyclo-C₆H₁₁), 4.09 m (1H, OCH₂, 8-H), 4.91 m (1H, 7-H), 6.23 s (1H, 1-H), 6.52 d (1H, NH, J = 7.6 Hz), 7.25 d $(2H, H_{arom}, J = 8.6 \text{ Hz}), 7.35 \text{ d} (2H, H_{arom}, J = 8.6 \text{ Hz}),$ 8.51 s (1H, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.75 (CH₂CH₃), 24.28 (cyclo-C₆H₁₁), 25.21 (cyclo-C₆H₁₁), 32.48 (cyclo-C₆H₁₁), 43.48 (C^{8}), 50.42 (cyclo-C₆H₁₁), 55.23 (C^7), 61.11 (OCH₂), 115.31 (C^{8a}), 123.15 (C^1), 128.23 (CH_{arom}), 128.46 (CH_{arom}), 132.55 (C_{arom}), 138.55 (C_{arom}), 149.19 (C³), 150.53 (C⁵), 169.21 (C=O). Mass spectrum: m/z 417 $[M + 1]^+$. Found, %: C 60.78; H 6.00; N 13.53. $C_{21}H_{25}CIN_4O_3$. Calculated, %: C 60.50; H 6.04; N 13.44. M 416.91.

Ethyl 7-(4-chlorophenyl)-3-(4-chlorophenylamino)-5-oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8-carboxylate (Vg). Yield 47%, mp >250°C. IR spectrum, v, cm⁻¹: 3230, 3335 (N–H); 1735 (C=O, ester), 1710 (C⁵=O). ¹H NMR spectrum, δ , ppm: 1.16 t (3H, CH₂CH₃, *J* = 7.0 Hz), 4.13 m (2H, OCH₂), 4.37 d (1H, 8-H, *J* = 4.2 Hz), 5.06 m (1H, 7-H), 6.57 s (1H, 1-H), 7.33–7.45 m (6H, H_{arom}), 7.77 d (2H, H_{arom}, *J* = 8.4 Hz), 8.96 s and 9.42 s (1H each, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 13.87 (CH₂CH₃), 43.44 (C⁸), 55.35 (C⁷), 61.32 (OCH₂), 116.86 (C^{8a}), 118.63 (CH_{arom}), 123.06 (C¹), 124.56 (C_{arom}), 128.19 (CH_{arom}), 128.57 (CH_{arom}), 128.59 (CH_{arom}), 132.65 (C_{arom}), 138.19 (C_{arom}), 138.37 (C_{arom}), 144.74 (C³), 150.33 (C⁵), 168.97 (C=O). Mass spectrum: *m/z* 445 [*M* + 1]⁺. Found, %: C 56.63; H 4.10; N 12.52. C₂₁H₁₈Cl₂N₄O₃. Calculated, %: C 56.64; H 4.07; N 12.58. *M* 445.30.

Ethyl 7-(4-chlorophenyl)-3-(4-methoxyphenylamino)-5-oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pvrimidine-8-carboxylate (Vh). Yield 46%, mp 236-237°C. IR spectrum, v, cm⁻¹: 3230, 3340 (N-H); 1735 (C=O, ester); 1710 (C⁵=O). ¹H NMR spectrum, δ , ppm: 1.16 t (3H, CH₂CH₃, J = 6.9 Hz), 3.71 s (3H, OCH₃), 4.14 m (2H, OCH₂), 4.32 d (1H, 8-H, J = 3.8 Hz), 5.05 m (1H, 7-H), 6.52 s (1H, 1-H), 6.87 d $(2H, H_{arom}, J = 8.5 \text{ Hz}), 7.33 \text{ d} (2H, H_{arom}, J = 8.4 \text{ Hz}),$ 7.44 d (2H, H_{arom}, J = 8.2 Hz), 7.64 d (2H, H_{arom}, J =8.5 Hz), 8.89 s and 9.17 s (1H each, NH). ¹³C NMR spectrum, δ_{C} , ppm: 14.41 (CH₂CH₃), 44.02 (C⁸), 55.68 (OCH₃), 55.87 (C⁷), 61.82 (OCH₂), 114.59 (CH_{arom}), 116.72 (C^{8a}), 119.00 (CH_{arom}), 123.72 (C¹), 128.81 (CH_{arom}), 129.13 (CH_{arom}), 133.17 (C_{arom}), 133.37 (C_{arom}), 138.87 (C_{arom}), 146.12 (C³), 151.11 (C⁵), 154.43 (C_{arom}), 169.62 (C=O). Mass spectrum: m/z 441 $[M + 1]^+$. Found, %: C 59.93; H 4.77; N 12.63. C₂₂H₂₁ClN₄O₄. Calculated, %: C 59.93; H 4.80; N 12.71. M 440.89.

Ethyl 7-(4-methoxyphenyl)-3-(4-methoxyphenylamino)-5-oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8-carboxylate (Vi). Yield 30%, mp 199-201°C. IR spectrum, v, cm⁻¹: 3230, 3340 (N–H); 1735 (C=O, ester); 1710 (C=O). ¹H NMR spectrum, δ , ppm: 1.19 t (3H, CH_2CH_3 , J = 7.1 Hz), 3.72 s (6H, OCH_3), 4.14 m (3H, OCH₂, 8-H), 4.92 m (1H, 7-H), 6.43 s (1H, 1-H), 6.84 m (4H, H_{arom}), 7.16 d (2H, H_{arom}, J =8.6 Hz), 7.59 d (2H, H_{arom} , J = 8.6 Hz), 8.72 d (1H, NH, J = 3.0 Hz), 9.18 s (1H, NH). ¹³C NMR spectrum, δ_C, ppm: 13.91 (CH₂CH₃), 43.81 (C⁸), 55.06 and 55.17 (OCH₃), 55.54 (C⁷), 61.19 (OCH₂), 113.97 (CH_{arom}), 114.08 (CH_{arom}), 116.59 (C^{8a}), 118.44 (CH_{arom}), 122.99 (C¹), 127.47 (CH_{arom}), 131.22 (C_{arom}), 132.91 (C_{arom}), 145.51 (C³), 150.68 (C⁵), 153.88 (C_{arom}), 158.91 (C_{arom}), 169.31 (C=O). Found, %: C 62.98; H 5.47; N 12.80. C₂₃H₂₄N₄O₅. Calculated, %: C 63.29; H 5.54; N 12.84.

Ethyl 7-(4-tert-butylphenyl)-5-oxo-3-[3-(trifluoromethyl)phenylamino]-5,6,7,8-tetrahydroimidazo-[1.5-c]pvrimidine-8-carboxvlate (Vi). Yield 58%, mp 200–201°C. IR spectrum, v, cm⁻¹: 3230, 3335 (N–H); 1735 (C=O, ester); 1710 (C=O). ¹H NMR spectrum, δ , ppm: 1.20 t (3H, CH₂CH₃, J = 7.2 Hz), 1.25 s (9H, t-Bu), 4.13 m (2H, OCH₂), 4.27 d (1H, 8-H, J = 3.8 Hz), 4.98 m (1H, 7-H), 6.56 s (1H, 1-H), 7.11–7.40 m (5H, H_{arom}), 7.47 t (1H, H_{arom} , J = 7.8 Hz), 7.77 d (1H, H_{arom} , J = 8.5 Hz), 8.32 s (1H, H_{arom}), 8.89 d (1H, NH, J = 2.3 Hz), 9.63 s (1H, NH). ¹³C NMR spectrum, δ_{C} , ppm: 13.69 (CH₂CH₃), 30.81 $[C(CH_3)_3]$, 33.98 $[C(CH_3)_3]$, 43.36 (C^8) , 55.64 (C^7) , 61.22 (OCH₂), 113.02 (CH_{arom}), 117.14 (CH_{arom}), 117.33 (C^{8a}), 120.95 (CH_{arom}), 123.10 (C¹), 124.23 q (CF₃, *J*_{CF} = 271 Hz), 125.31 (CH_{arom}), 125.79 (CH_{arom}), 129.50 (Carom), 129.74 (CHarom), 136.29 (Carom), 140.19 (C_{arom}) , 144.46 (C^3) , 150.31 (C_{arom}) , 150.41 (C^5) , 169.21 (C=O). Mass spectrum: m/z 501 $[M + 1]^+$. Found, %: C 62.29; H 5.41; N 11.22. C₂₆H₂₇F₃N₄O₃. Calculated, %: C 62.39; H 5.44; N 11.19. M 500.52.

Ethyl 7-(4-tert-butylphenyl)-3-(4-methoxyphenylamino)-5-oxo-5,6,7,8-tetrahydroimidazo[1,5-c]pyrimidine-8-carboxylate (Vk). Yield 30%, mp 168-170°C. IR spectrum, v, cm⁻¹: 3335, 3240 (N–H); 1735 (C=O, ester), 1710 (C=O). ¹H NMR spectrum, δ , ppm: 1.19 t (3H, CH_2CH_3 , J = 6.9 Hz), 1.25 s (9H, *t*-Bu), 3.72 s (3H, OCH₃), 4.10–4.21 m (3H, OCH₂, 8-H), 4.95 m (1H, 7-H), 6.45 s (1H, 1-H), 6.83 d (2H, H_{arom}, J = 8.3 Hz), 7.16 d (2H, H_{arom}, J = 8.3 Hz), 7.33 d (2H, H_{arom} , J = 8.0 Hz), 7.61 d (2H, H_{arom} , J = 8.0 Hz), 8.76 s and 9.21 s (1H each, NH). ¹³C NMR spectrum, δ_C, ppm: 13.75 (CH₂CH₃), 30.85 [C(CH₃)₃], 34.17 $[C(CH_3)_3], 43.41 (C^8), 54.90 (OCH_3), 55.55 (C^7),$ 61.22 (OCH₂), 114.04 (CH_{arom}), 116.43 (C^{8a}), 118.53 (CH_{arom}), 123.02 (C¹), 125.36 (CH_{arom}), 125.77 (C_{arom}), 132.80 (C_{arom}), 136.49 (C_{arom}), 145.51 (C³), 150.37 (C_{arom}) , 150.65 (C^{5}) , 153.95 (C_{arom}) , 169.38 (C=O). Found, %: C 67.74; H 6.48; N 12.29. C₂₆H₃₀N₄O₄. Calculated, %: C 67.51; H 6.54; N 12.11.

Ethyl 7-(4-*tert*-butylphenyl)-3-(3-chloro-4-methylphenylamino)-5-oxo-5,6,7,8-tetrahydroimidazo-[1,5-*c*]pyrimidine-8-carboxylate (VI). Yield 41%, mp 201–202°C. IR spectrum, v, cm⁻¹: 3335, 3240 (N–H); 1735 (C=O, ester); 1710 (C=O). ¹H NMR spectrum, δ, ppm: 1.15 t (3H, CH₂CH₃, J = 6.9 Hz), 1.23 s (9H, *t*-Bu), 2.26 s (3H, CH₃), 4.15 m (2H, OCH₂), 4.36 d (1H, 8-H, J = 3.7 Hz), 5.00 m (1H, 7-H), 6.59 s (1H, 1-H), 7.09–7.48 m (6H, H_{arom}), 8.09 s (1H, H_{arom}), 8.92 s and 9.40 s (1H each, NH). ¹³C NMR spectrum, δ_C, ppm: 13.85 (CH₂CH₃), 18.68 (CH₃), 30.95 [C(CH₃)₃], 34.17 [C(CH₃)₃], 43.49 (C⁸), 55.72 (C⁷), 61.24 (OCH₂), 116.05 (CH_{arom}), 116.84 (CH_{arom}), 117.02 (C^{8a}), 123.21 (C¹), 125.40 (CH_{arom}), 125.40 (CH_{arom}), 125.85 (C_{arom}), 127.34 (C_{arom}), 131.11 (CH_{arom}), 133.19 (C_{arom}), 136.34 (C_{arom}), 138.58 (C_{arom}), 144.68 (C³), 150.40 (C_{arom}), 150.45 (C⁵), 169.27 (C=O). Found, %: C 65.07; H 6.09; N 11.78. C₂₆H₂₉ClN₄O₃. Calculated, %: C 64.93; H 6.08; N 11.65.

REFERENCES

- 1. Kincl, F.A., Romo, J., Rosenkranz, G., and Sondheimer, F., J. Chem. Soc., 1956, p. 4163.
- Mechoulam, R., Sondheimer, F., Melera, A., and Kincl, F.A., J. Am. Chem. Soc., 1961, vol. 83, p. 2022.
- Siddigi, S.M., Melman, N., Olah, M.E., Jain, R., Evans, R., Glashofer, M., Radget, W., Cohen, L.A., Daly, J.W., Stiles, G.L., and Jacobson, U.A., *Nucleosides Nucleotides*, 1996, vol. 15, p. 693.
- 4. Yoshida, O., Yasukata, T., Sumino, Y., Munekage, T., Narukawa, Y., and Nishitani, Y., *Bioorg. Med. Chem. Lett.*, 2002, vol. 12, p. 3027.
- 5. Potvin, P.G. and Wong, M.H., J. Chem. Soc., Chem. Commun., 1987, p. 672.
- Narayanan, S., Vangapandu, S., and Jain, R., *Bioorg. Med. Chem. Lett.*, 2001, vol. 11, p. 1133.
- Borchers, A. and Schunack, W., Arch. Pharm., 1984, vol. 317, p. 455.
- Collman, J.P., Zhong, M., and Costanzo, S., J. Chem. Res., Synop., 2001, no. 5, p. 195.
- Schlögl, K and Woidich, H., Monatsh. Chem., 1956, vol. 87, p. 679.
- Chivikas, C.J. and Hodges, J.C., J. Org. Chem., 1987, vol. 52, p. 3591.
- 11. Wade, J.J., J. Heterocycl. Chem., 1986, vol. 23, p. 981.
- 12. Kappe, C.O., Tetrahedron, 1993, vol. 49, p. 6937.
- 13. Dallinger, D., Stadler, A., and Kappe, C.O., *Pure Appl. Chem.*, 2004, vol. 76, p. 1017.
- 14. Zigeuner, G., Hamberger, H., Blasche, H., and Sterk, H., Monatsh. Chem., 1966, vol. 97, p. 1408.
- 15. Biginelli, P., Gazz. Chim. Ital., 1893, vol. 23, p. 360.
- 16. Kappe, C.O., Justus Liebigs Ann. Chem., 1990, p. 505.
- 17. Molina, P. and Vilaplana, M.J., *Synthesis*, 1994, no. 12, p. 1197.
- 18. Palacios, F., Alouso, C., Aparicio, D., Rubiales, G., and de los Santoc, J.M., *Tetrahedron*, 2007, vol. 63, p. 523.
- 19. Molina, P., Díaz, I., and Tárraga, A., *Synlett*, 1995, no. 10, p. 1031.
- Ding, M.-W., Tu, H.-Y., and Liu, Z.-J., Synth. Commun., 1997, vol. 27, p. 3657.
- Palacios, F., Legido, M., Perez de Heredia, I., Rubiales, G., and Ezpeleta, J.M., *Heterocycles*, 2001, vol. 55, p. 1641.